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1  Introduction
We consider estimation of a model with an unobserved explanatory variable, when a set of variables 
thought to proxy for the regressor is observed. A related problem has played a prominent role in the empiri-
cal growth literature, where it is generally interpreted as a model specification issue.1 We examine the issue 
in the context of a measurement error model similar to that considered by Bollinger (2003) and Lubotsky 
and Wittenberg (2006), who provide examples from labor economics. We focus on how the use of these 
proxy variables affects the estimates of other coefficients in the model, and discuss how best to use com-
binations of proxy variables in order to minimize the inconsistency on these other coefficients. We derive 
analytical results which extend and combine those of Lubotsky and Wittenberg (2006) with those of Bol-
linger (2003), and perform simulations and an empirical example. Although the difference between our 
approach – seeing this as a measurement issue – and the model specification approach commonly taken 
in the growth literature is subtle, the approaches yield strikingly different results. When the issue is posed 
as a measurement issue, which we argue is often realistic, our results are preferable to the model specifica-
tion approach.

This paper considers estimation of a model such as the following:

 1 2 ,i i i iy Z uβ= + +′Zα
 (1)

1 This literature includes the extreme bounds approach of Levine and Renelt (1992), the distributional approach of Sala-i-Mar-
tin (1997), and Bayesian Model Averaging as in Sala-i-Martin, Doppelhofer, and Miller (2004) and Durlauf, Kourtellos, and Tan 
(2008). For additional discussion of the issue of model uncertainty in the macroeconomic literature, see Brock and Durlauf (2001) 
and Brock, Durlauf, and West (2003).
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E[ui|Z1i, Z2i] = 0 and V(Z1i, Z2i) is full rank. The assumption that this is a conditional expectation is not 
necessary; the linear projection model is a sufficient assumption. The vector α is a k × 1 vector of param-
eters, while Z1i is a k × 1 vector of random variables. The parameter β and its corresponding variable Z2i are 
both scalar. We assume that the structural model is well-specified; that is, the researcher is interested in 
the model above, and in particular, estimation of α. However, the researcher does not observe the variable 
Z2i, but only observes a set of variables Xi (referred to as proxy variables) which are thought to be related 
to Z2i.

Examples of this situation include the case where yi is earnings and Z1i is gender or race while Z2i is 
human capital (see Bollinger 2003 for some results). A second example is the case considered by Lubotsky 
and Wittenberg (2006) where yi is consumption and Z2i is permanent income. In our example in Section 4, 
following the human capital-augmented Solow model, yi is economic growth, while Z1i is a vector includ-
ing initial GDP per capita, investment in physical capital, and population growth, and Z2i is aggregate 
human capital. The problem in all of these cases is that while conceptually (or theoretically) Z2i exists and 
plays an important role in the model, it is difficult or impossible to actually measure. Griliches (1974, 976), 
whose examples include both human capital and permanent income, describes this type of unobservable 
variable as one that “do[es] not correspond directly to anything that is likely to be measured.” What are 
often available are variables termed “proxy” variables, thought to be correlated with, but not perfectly 
related to, the underlying theoretical concept. In the case of human capital in the earnings literature, 
measures such as AFQT scores (see Neal and Johnson 1996; Bollinger 2003) are often used. In the case 
of permanent income, measures of multiple years of realized income are typically available (Lubotsky 
and Wittenberg 2006). In the case of measuring human capital in the cross-country growth literature, 
various measures of school attainment or completion rates are often used: the numerous studies employ-
ing enrollment rates include Mankiw, Romer, and Weil (1992), who use secondary enrollment rates, and 
Sala-i-Martin (1997), who uses primary school enrollment rates. The seminal empirical growth study of 
Barro (1991) uses both. Many other studies use outcome measures to proxy for the stock, rather than the 
flow, of human capital, such as literacy rates or the school attainment measures most recently updated 
in Barro and Lee (2001).

Our approach is related to the model specification literature, including extreme bounds analysis (EBA).2 
We will show, however, that our approach provides very different results. The main difference between our 
approach and the model specification approach common in the economic growth literature derives from the 
framing of the problem. We begin with a clear theoretical model stated as a linear equation. The problem 
stems from the fact that the model includes a variable (e.g., human capital) that is not measured directly. 
This is also how the issue is often initially presented in the model specification literature: for example, Sala-
i-Martin, Doppelhofer, and Miller (2004) state, “The problem faced by empirical economists is that growth 
theories are not explicit enough about what variables…belong in the “true” regression.” Thus the issue, as we 
frame it, is one of having multiple proxy variables for a variable in a well-specified model. While the model 
specification literature interprets this as choosing one model from many possible models, we argue that the 
issue is one of measurement rather than model specification. While there may be situations where the model 
of interest is not well specified, our approach is appropriate in many contexts, including many where the 
model specification literature has been employed.

An important caveat to this paper, however, is that the “proxy” (observed) variables in the model speci-
fication literature do not always proxy for only one unobserved variable. For example, Levine and Renelt 
(1992) describe their seven variables corresponding to our proxies as “fiscal, trade, monetary, uncertainty, 
and political-instability indicators.” Although we do not extend our results in this paper to the case with 
multiple unobserved variables, Bollinger (2003) presents results for the case with k unobserved regres-
sors and k proxies. Wittenberg (2007) provides a test examining whether the proxies represent one or more 

2 Note that the model specification approach also encompasses an informal but very common practice in many fields of econom-
ics: asserting that results are “robust” to alternative measures of explanatory variables, generally after simply substituting one 
for another in the analysis.
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latent variables.3 Our generalized proxy bounds approach, however, starts from the premise that the correct 
specification cannot be estimated, since one of the variables (“human capital”) is not observed; rather, the 
researcher has a set of proxies for the unobserved variable. In this paper, we develop a procedure for bound-
ing coefficient estimates in the presence of proxies for an unobserved variable.

The two approaches yield very different results: in fact, we show that the bounds from the two approaches 
do not overlap, although they have one bound in common. Through our analytic results and simulations, we 
show that our generalized proxy bounds tend to outperform EBA, particularly in the most relevant cases. We 
then provide an empirical example from the growth literature.

The analytic sections draws heavily from Lubotsky and Wittenberg (2006) and Bollinger (2003) to arrive 
at three results. First, we extend the result of Lubotsky and Wittenberg (2006) (hereafter L-W) and focus 
on the inconsistency in estimation of α. These results are also related to Bollinger (2003), which consid-
ers the case where Xi is of the same dimension as Z2i. We show that the minimum inconsistent estimates of 
the parameters α can be achieved from the results of the regression that includes all proxy variables. (L-W 
showed the minimum inconsistency on β occurred with all proxy variables included, but did not explicitly 
examine the inconsistency on α.) L-W show that the minimum inconsistency estimate of β is only estimable 
if there is an element of Xi which has the same scale as Z2i. This will be discussed more formally below, but 
essentially requires that one of the proxies be a classical additive white noise measurement error process. Our 
results for β require the same assumption. However, we show that the minimum inconsistent estimates for α 
do not require this assumption. We further show that, as in Bollinger (2003), minimum inconsistent estimates 
of β/ρ1 (where ρ1 is a scaling parameter) are always estimable. As discussed in Bollinger (2003), this is simply 
a normalization of the scale of the unobserved variable Z2i. Finally, we extend the results of Bollinger (2003) 
to derive a set of bounds for the parameters (α, β). The minimum inconsistent estimates of (α, β) form one 
bound, and a reverse regression (like that used in Klepper and Leamer 1984; Bollinger 2003) provides the 
other bound.

We compare these results to extreme bounds analysis, as an illustrative example of the model specifica-
tion approach. What is important in this comparison is that regressions that include only a subset of the 
proxy variables have at least as large an inconsistency as the regression that includes all proxy variables, and 
the inconsistency is of the same sign. We show that the extreme bounds approach will not provide bounds 
that include the parameters α (or β) in the model above, while our results do provide such bounds. In addi-
tion to demonstrating that the prescription of Lubotsky and Wittenberg (2006), to include all proxy variables 
in the regression, extends to regressions with additional regressors, the bounds results are important in that 
they establish both the direction and the potential magnitude of the inconsistency resulting from the use 
of proxy variables. Typically researchers include proxy variables with little understanding of the potential 
inconsistency on other parameters in the linear model. This paper establishes those results, links them to 
omitted variable inconsistency, and demonstrates that the direction of the inconsistency can be identified.

Next, we demonstrate our analytic results using Monte Carlo evidence and comparing these generalized 
proxy bounds to extreme bounds analysis. We find that in many cases, the extreme bounds analysis provides 
the wrong conclusion, while the proxy bounds yield the correct conclusion. The only cases where extreme 
bounds analysis appears to work well are cases where the unmeasured variable Z2i is uncorrelated with the 
other variables in the model, and hence all estimates from extreme bounds analysis are consistent for the 
parameter of interest.

We conclude with an empirical example from the cross-country growth literature in which human capital 
is measured through three proxy variables: literacy rates, and enrollment in primary and secondary school. 
Following the growth literature, we use our bounds as a robustness test, and compare them to extreme 
bounds results. We find that the coefficient estimate on initial income is “robust” (i.e., consistently negative 
and statistically significant), as previous extreme bound analyses have concluded. However, in contrast to 

3 Our intuition is that EBA and other model specification approaches would also have problems in the case with multiple unob-
served variables, although bounds derived under EBA may contain the true estimate, depending on the extent to which bias from 
one unobserved variable offsets bias from another.
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previous results, we find that the coefficient estimate on investment cannot be distinguished from zero, while 
that on population growth is robustly statistically different from zero.

2  Analytic Results
This section proceeds as follows. First, we extend the results of L-W and establish that there is a linear combi-
nation of proxy variables which simultaneously minimizes the inconsistency on all coefficients in the model. 
However, forming this linear combination requires knowledge of unidentified variances. Second, as with L-W, 
the OLS regression that includes all proxy variables provides coefficients on the observed variables that are 
equal to the coefficients that would be achieved by use of the inconsistency-minimizing linear combination 
of proxy variables. Following L-W, we also show that an available linear combination of the coefficients on the 
proxy variables achieves the minimum inconsistent estimate of the ratio of β/ρ1 (where ρ1 is a scaling param-
eter defined below that L-W assume to be 1), and that from the OLS results, the optimal linear combination 
of the proxy variables can be constructed. From this result we show that bounds on the coefficients can be 
achieved by applying results from Bollinger (2003).

Equation 1 provides the structural model of interest. We assume that the researcher’s primary interest is 
estimation of the parameters α, the coefficients on Z1i. The relationship between the observed proxies and the 
variable of interest is

 2 .i i iZ= +X ρ ε
 (2)

These are also sometimes referred to as multiple indicators (for example Goldberger and Jöreskog 1975 or 
 Wooldridge 2010). The l × 1 vector Xi contains multiple measures of the scalar variable Z2i. The nuisance 
parameter ρ is a l × 1 vector of unknown constants. We assume that
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The relationship expressed in equation 2 and assumption A1 is relatively benign and implies only that the 
linear projection of Xi on Zi exists provided that both Xi and Zi have finite first and second moments. Assump-
tions A2 and A3 do impose some important restrictions on the data generating process. Specifically, they state 
that, except as measures of Z2i, there is no additional information about Yy contained in these proxy variables 
and that the correlation between the proxy variables and the observed variables Z1i is only through Z2i. Since 
V(εi) is not diagonal, an instrumental variables approach is not available. We assume that the researcher 
observes (yi, Z1i, Xi).

Like L-W, we begin by considering the problem of choosing a linear combination of Xi to minimize the 
inconsistency on the resulting coefficient. That is, L-W are interested in the regression of yi on :i iX δ = ′Xδ  the 
problem is to choose a l × 1 vector δ to minimize the inconsistency in estimation of β. (In their case, α = 0 and 
there are no other regressors.) We follow the same approach here, but include additional regressors. As noted 
in L-W,

2 .i i i iX Zδ = = +′ ′ ′Xδ δ ρ δ ε

We can write this as

 2 ,i i iX Z eδ δ δγ= +
 (3)

which is a general measurement error specification as considered by Bollinger (2003). If the scalar γ = δ′ρ = 1, 
then classical errors-in-variables results reveal that measurement error inconsistency from the regression of 



C.R. Bollinger and J. Minier: On the Robustness of Coefficient Estimates to the Inclusion of Proxy Variables      105

yi on Z1i and iX δ is minimized when ( )iV eδ  is minimized. L-W examine this case. We extend this result beyond 
the results of L-W in two dimensions. First, we clarify the scaling issue with respect to the choice of γ = δ′ρ. 
Second, we derive expressions for the inconsistency on α and show that the result of L-W also minimizes the 
inconsistency on all regressors in the model.

Proposition 1 Define γ = δ′ρ > 0 and θ = β/γ. Let ( , )tδ δa  be the coefficients from the regression of yi on ( )
1 ,i iX δ γZ  

for any δ and a given value of γ. Then, δ = γ(Σ–1ρ′Σ–1ρ)–1 solves both min
δ
 (tδ–θ)2 and min

δ
||aδ–α|| for γ = δ′ρ.

Proof. By Lemma 1 (see Appendix A) we can write
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and

 ( )t δ θ Ωθ− =−  (5)

where V1 = V(Z1i), V2 = V(Z2i), C = Cov(Z1i, Z2i), and
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The common term Ω is a scalar. When Σ is positive definite, Ω is positive (see Lemma 2); hence the incon-
sistency on any coefficient (as measured by any norm) is minimized when this term is minimized. It is trivial 
to show that Ω is increasing in the term (δ′Σδ). Hence, choosing the inconsistency-minimizing δ is equivalent 
to solving

( ) subject to ,min
δ

Σ δ ρ γ=′ ′δ δ

the solution to which is δ* = γ(Σ–1ρ)(ρ′Σ–1ρ)–1. (See  Appendix A.) 

L-W derive the inconsistency expression for tδ when δ′ρ = γ = 1, although they also discuss the more general 
case. The inconsistency minimization, relative to α and θ, holds regardless of γ. When γ = 1, the relationship 
between iX δ  and Z2i is a classical measurement error relationship. This provides a great deal of the intuition 
to these results. As is well known, the inconsistency from classical measurement error is determined by the 
variance of the error term, which in this case is Var( ) .ieδ = ∑′δ δ  Hence the goal in combining X′s is to choose 
a linear combination that minimizes the error variance. In the case where γ is some arbitrary constant, the 
intuition for the result can be found in Bollinger (2003), who shows that the model can be rescaled in terms 
of (β/γ) to be a classical measurement error model, and again, the inconsistency is minimized by choosing δ 
to minimize the variance of ei.

We next turn to the issue of the scaling γ. Unlike Bollinger (2003), γ is a choice variable (in the sense of 
the problem of choosing a linear combination of X). L-W focus on the case where γ = 1 for a number of reasons. 
Their fundamentally important result shows a duality between the solution to choosing the optimal linear 
combination of Xi and the linear regression of yi on Xi. Another reason is that if there exists a δ so that δ′Σδ = 0, 
then the choice γ = 1 achieves no measurement error inconsistency. We consider general implications of the 
choice of γ, and these will become important for the general result below which relaxes the assumption 
made by L-W that ρ1 = 1 (the first element of ρ, although any element can technically be chosen and the vector 
arranged appropriately).

Corollary 1 If 
1 1

2 1

11 ,
( )( )V V

γ
ρ Σ ρ− −= = +′

−′ ′C C
δ ρ  then (t–β) = 0: the OLS regression of yi on Z1i and 

iX δ  provides  
consistent estimates of β.
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Corollary 2 The inconsistency for α, as expressed by  (aδ–α), does not depend on γ. Even the choice above, which 
allows consistent estimation of β, does not provide consistent estimation of α.

We leave the proof of corollary 1 to Appendix A and focus here on the proof of the second corollary.

Proof. As noted above,
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Substituting the optimal choice of δ (given a value of γ) from Proposition 1 into Ω (defined by (6))  
results in
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which is not a function of γ. (See the proof of Corollary 1 in Appendix A for details.) Regardless of γ, the incon-
sistency on α is determined by the underlying variance covariance structure of (Z1i, Z2i, Xi). 

The intuition is simple: unless Σ = 0, measurement error exists and severs the relationship between Z1i and 
Z2i. Even though a rescaling of the iX δ  variable exists, the OLS regression alone will not result in consistent 
estimation. To arrive at that, the variable Z1i must be rescaled as well.

It also important here to note that since the term Ω is positive, the direction of the inconsistency on 
each coefficient is determined solely by the sign of C and β. Note that if C = 0, there is no inconsistency for 
αδ, and that the magnitude of the inconsistency is increasing in C. The magnitude of the inconsistency for 
different linear combinations of Xi is determined solely by Ω. Hence, linear combinations of Xi that include 
only some subset of the proxies cannot be better than the optimal linear combination.

Clearly, however, both the optimal choice of δ and the choice of γ rely on information unavailable in 
typical applications: specifically Σ (the variance matrix of ε), C (the covariance between Z1i and Z2i), and V2 
(the variance of Z2i). The second key result of L-W is that the OLS regression of yi on Z1i and Xi provides slope 
coefficients on Z1i equivalent to the coefficients from the regression of yi on Z1i and Xδ for the optimal choice of 
δ. Further, a linear combination of the coefficients on Xi can be combined to achieve the minimum inconsist-
ency estimate of β for the case where γ = 1. L-W showed this for the linear combination of the coefficients on 
Xi, even in the presence of additional regressors. We focus on the expression for the coefficients on additional 
regressors, which was not examined by L-W.

Proposition 2 Let (a, b) be coefficients from the population least squares regression of yi on Z1i and Xi. Then 
a = aδ and ρ′b = tδ for δ = Σ–1ρ/(ρ′Σ–1ρ).

The proof is provided in Appendix A and follows rather directly from Proposition 1 above and Proposi-
tion 3 in Lubotsky and Wittenberg (2006). It is important here to note the implication: the OLS regression 
that includes all proxy variables (Xi) achieves coefficients on all other regressors which have the minimum 
inconsistency achievable through any linear combination of regressors. Since the result does not depend on 
the number of proxy variables, using any subset of Xi is equivalent to using a linear combination of the full 
set of ,iX s′  and so necessarily has a larger inconsistency than using all Xi. Thus the set of coefficients used in 



C.R. Bollinger and J. Minier: On the Robustness of Coefficient Estimates to the Inclusion of Proxy Variables      107

extreme bounds analysis (or other model specification approaches) represents coefficients where the incon-
sistency is larger as fewer and fewer iX s′  are included, and importantly, the inconsistency is always in the 
same direction. Indeed, if aj < aj (elements of a and α respectively), then any coefficient ja�  from the regression 
of yi on Z1i and any subset of Xi will be less than or equal to : < < .j j j ja a a α�  We state this formally in the follow-
ing corollary:

Corollary 3 Let aj,αj, and Cj be corresponding elements of a, α, and C. Let ja�  be the corresponding coefficient 
from any regression of yi on Z1i and any subset of elements of Xi. Then if Cj > 0, ,;j ja a α≥ ≥�  if Cj < 0 then .j ja aα≥ ≥ �

Lubotsky and Wittenberg (2006) show that Xδ can be formed empirically if ρ1, the first element of ρ, is 
known to be 1. We note that this is a desirable case, leading to inference on the parameter β. However, in 
practice, this assumption may be difficult to justify. Of importance here is the fact that information about the 
parameter vector α, can be obtained regardless of this assumption. L-W note that

( , ) ( , )ij i j i iCov X y Cov Z yρ=

for each element Xji of the vector Xi. Hence, if ρ1 = 1, the terms in ρ are identified by 
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Unlike L-W, this vector is actually overidentified, since the other regressors Z1i can also be used in place of yi: 
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Considering the results in corollary 1, this implies that use of ρ* is equivalent to choosing δ′ρ = ρ1, rather than 
1 as is the case in proposition 2. Note that this choice has no effect on the results for a. Therefore, ρ*′b is the 

least inconsistent estimate of 
1

.β
ρ

L-W also consider construction of Xδ. They show that (Xib)/ρ′b) = Xδ for the optimal δ when δ′ρ = 1. This 
result holds regardless of whether ρ1 = 1. Similarly, ( ) /( )i X δ=′ ′X b bρ  for the optimal δ when δ′ρ = ρ1. Thus, the 
regression of yi on Z1i and (Xib)/(ρ′b) will yield a slope coefficient of ρ′b.

We return now to the dual problem of linear combinations of Xi. Let 1X ρ  be the optimal linear combina-
tion of Xi for the restriction that δ′ρ = ρ1. This implies that

1
1 2 ,i i iX Z vρ ρ= +

where vi = ρ1(ρ′Σ–1ρ)–1 (ρ′Σ–1)ε. Thus, 1
iX ρ  is a mismea sured variable with a scaling coefficient. Bollinger (2003)  

considers this case and shows that the direct regression of yi on Z1i and 1X ρ  provides a lower bound for the 
ratio 

1

,β
ρ

 and the slope coefficients on Z1i form one bound (upper or lower depending upon sign of C) for the  

coefficients α. Bollinger (2003) also shows that the reverse regression 1
iX ρ  on yi and Z1i provides the upper 

bound on 
1

β
ρ

 and the other bound on α. Since Xδ can be formed from the results of the regression of yi on Z1i 

and Xi, the reverse regression can also be estimated. Let d2 be the coefficient on yi from the reverse regression 
and let d1 be the vector of coefficients on Z1i from the reverse regression. This allows us to state the following 
proposition:

Proposition 3 The sign of ρ′b is the sign of β. Further, 2
1

| | | 1/ |dβ
ρ

≤ ≤′bρ  and αj is bounded by aj and –d1j/d2.
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The proof follows from the results in propositions 1 and 2, the definition of 1X ρ  and Theorem 1 and corol-
lary 1 in Bollinger (2003).

This result provides an approach to achieve bounds on α and a rescaled measure of β. These bounds cor-
respond to the tightest bounds achievable using any linear combination of the available proxy variables. It is 
interesting to note that by corollary 3 and proposition 3, the bounds achieved will not contain any of the coef-
ficients obtained through extreme bounds analysis: extreme bounds analysis provides a set of inconsistent 
coefficients. The inconsistency is related to omitted variable inconsistency for failing to include Z2i: the proxy 
variables only partially control for Z2i. Thus the difference in estimates from different combinations represent 
different levels of omitted variable inconsistency. There is one special case in which extreme bounds analysis 
provides a set of consistent estimates of α: when C = 0. In this case, any regressions of yi on Z1i and any (or no) 
elements of Xi provide consistent estimates of α.

The estimated bounds can all be obtained through a two-stage procedure: first regress yi on Z1i and Xi. 
Estimate elements of ρ* using the estimated covariance ratios. We found that estimation was more stable 
when all covariance ratios were used and simply averaged to arrive at a minimum distance type estimator. 
One could potentially improve upon this by using a GMM approach. Using b and the estimated ρ* terms, con-
struct 1 .iX ρ  Then regress yi on Z1i and 1

iX ρ  to obtain the direct regression bounds, and regress 1
iX ρ  on yi and 

Z1i to obtain the terms to construct the reverse regression bounds.
Standard errors are analytically difficult, and typical asymptotic approximation results are unlikely to 

perform well in finite sample for three reasons. First, the procedure above involves “constructed regressors” 
(for a discussion, see Wooldridge 2010). Second, the reverse regression bounds are nonlinear functions of 
estimated parameters. Third, even if there is no heteroskedasticity in the structural equation, the estimated 
reduced form equations will be highly heteroskedastic. We recommend, and use in what follows, boot-
strapped standard errors.

3  Simulation Results
In order to illustrate and evaluate the above results, we provide a set of simulations. In particular, this 
section highlights differences between the results of the Extreme Bounds procedure and our Generalized 
Proxy Bounds. We should emphasize that we have chosen to compare our results to Extreme Bounds because 
of its relative transparency, but other model specification procedures (such as those in Sala-i-Martin 1997, 
and Sala-i-Martin, Doppelhofer, and Miller 2004) would yield similar results to EBA.4 We use the following 
model:

1 2 .i i i iy Z Z uα= + +

We let
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(8)

For simplicity, we generate (vi, ei, ui) as jointly standard normally distributed and mutually independ-
ent. We generate (Z1i, Z2i) as jointly standard normally distributed with a covariance C (which is also the 

4 One difference between EBA and alternative model specification approaches is that since EBA considers the entire distribution 
(i.e., it does not disregard the tails of the distribution), it shares a bound with our Generalized Proxy Bounds (i.e., the least-biased 
estimate from the direct regression, when all of the proxy variables are included). The bounds from the other model specification 
procedures are further from the true parameter.
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correlation). For simplicity, we impose the L-W assumption that ρ1 = 1; this has no implications on the bounds 
for α, which are the focus of the simulation. The term s determines the total amount of measurement error in 
the proxy variables (and also in the optimal linear combination of the proxy variables). Two values of α are 
interesting: 1 and 0. Using α = 1 provides a benchmark estimate of how large the inconsistency from the regres-
sion of yi on Z1i and Xi (or subsets of Xi) is likely to be. It also demonstrates that the extreme bounds approach 
can either over- or understate the coefficient on Z1i, depending on C. Similarly, the case of α = 0 demonstrates 
that the extreme bounds procedure may lead one to conclude that Z1i is an important explanatory variable 
when in fact it is not. We examine nine values of C: 0, ± 0.25, ± 0.5, ± 0.75 and  ± 0.9. We examine two values of 
s: 1 and 1.4 2≈  (these result in error variances of 1 and 2, respectively). The simulation results are based on 
500 replicates of samples of size 1000.

Table 1 summarizes the results of our Monte Carlo simulations. Our results focus on inference about 
α. In the first row of Panel A, we present the proportion of times that the estimated generalized proxy 
bounds include the true value of 1. The second row allows for sampling variance of the bounds and pre-
sents the proportion of times where the bounds plus and minus 1.96 times the standard error contain the 
true coefficient (that is, GPBlower–1.96 × s.e. < 1 < GPBupper+1.96 × s.e.). The third and fourth rows provide com-
parable statistics for the extreme bounds approach. In row 3 we present the proportion of times that the 
extreme bounds contain the true coefficient, while in row 4 we allow for sampling variance and present 
the proportion of times that the true coefficient falls within the bounds  ± 1.96 times the standard error. 
The fifth and sixth rows present the average values of the lower and upper bounds from each of the two 
procedures.

When C is small, the inconsistency on estimates when Z2 is omitted is quite small. Indeed, in the case 
where C = 0 (the first column of Panel A), there is no inconsistency from using the proxy variables (nor would 
there be from simply omitting Z2 completely). This shows up in that both the Generalized Proxy Bounds we 

Table 1 Simulation Results varying C.

  C = 0   C = 0.25   C = 0.5   C = 0.75   C = 0.9

P(α∈GPB)   0.252   0.714   0.916   0.993   1.000
P(α∈GPB+se)   0.981   0.997   1.000   1.000   1.000
P(α∈EBA)   0.265   0.291   0.087   0.007   0.000
P(α∈EBA+se)   0.985   0.923   0.749   0.336   0.019
mean (EBA)   (0.987, 1.011)   (1.02, 1.13)   (1.05, 1.29)   (1.11, 1.52)   (1.26, 1.76)
mean (left GPB)   0.999   1.02   1.05   1.11   1.26
s.d. (actual, boot)   (0.032, 0.033)   (0.034, 0.034)   (0.036, 0.037)   (0.048, 0.047)   (0.066, 0.065)
mean (right GPB)   1.002   0.73   0.34   –0.72   –3.72
s.d. (actual, boot)   (0.046, 0.048)   (0.054, 0.052)   (0.070, 0.070)   (0.148, 0.148)   (0.513, 0.518)

    C = –0.25   C = –0.5   C = –0.75   C = –0.9

P(α∈GPB)     0.729   0.915   0.991   1.000
P(α∈GPB+se)     0.991   0.999   1.000   1.000
P(α∈EBA)     0.279   0.086   0.009   0.000
P(α∈EBA+se)     0.917   0.743   0.313   0.014
mean (EBA)     (0.87, 0.98)   (0.71, 0.95)   (0.48, 0.89)   (0.24, 0.74)
mean (left GPB)     0.98   0.95   0.89   0.74
s.d. (actual, boot)     (0.034, 0.034)   (0.036, 0.037)   (0.048, 0.047)   (0.066, 0.065)
mean (right GPB)     1.27   1.66   2.72   5.69
s.d. (actual, boot)     (0.054, 0.052)   (0.074, 0.070)   (0.150, 0.148)   (0.521, 0.512)

Notes: In each panel, the first row gives the proportion of times in our simulations that the true value of a ( = 1) falls within the 
Generalized Proxy (GPB) bounds. The second row gives this proportion when sampling variance is accounted for. The next two 
rows give these proportions for Extreme Bounds (EBA) as described in the text. The last rows give the means of the extreme 
bounds (EBA) and Generalized Proxy bounds (GPB), along with the actual and bootstrapped standard errors for each of the GP 
bounds.
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propose and the extreme bounds perform quite well when the standard errors are included. Without stand-
ard errors, the GPB and the EBA bounds are really two consistent estimators of the same parameter α. In the 
limit, these two bounds will converge to the true parameter. In sample, they may or may not bound the actual 
parameter. This can be seen most starkly, in the last two rows where the range is extremely narrow. Including 
the standard errors provides a confidence interval slightly larger than 95%, because it is based upon multiple 
estimates. In the case where C = 0, the identification of the parameters ρ rests solely on the covariance with y as 
used in Lubostky and Wittenberg (2006).5 Caution should be used when it may be that C = 0, in that estimation 
of ρ may be imprecise. However, we postulate that by the very nature of the problem, it is an unusual case.

Moving across the table, C increases in absolute value. The third column, for example, provides a case where 
the covariance between Z1 and Z2 is equal to 0.5. The first two rows of column 3 demonstrate that the General-
ized Proxy (GP) Bounds work quite well. The bounds themselves capture the true coefficient in over 91% of the 
samples. If sampling variance is allowed for, the bounds contain the true coefficient 100% of the time. In con-
trast, as shown in the next two rows, the extreme bounds perform quite poorly, only capturing the true coefficient 
8.7% of the time. Allowing for sampling error, this rises to nearly 75% of samples.

Examining the bounds in the last two rows of column 3, we can see that the two sets of bounds share a 
common value: 1.05 (on average). This is the average upper bound for the GP bounds, and the average lower 
bound for the extreme bounds. As noted above, this occurs when all three proxy variables for Z2 are included 
in the regression. We note that on average, the extreme bounds lie above 1.05, with the largest being 1.29. This 
represents the fact (as discussed above) that the omitted variable inconsistency from failure to include Z2 
generally biases the estimate of α upward. It is also worth noting that the estimate using all three proxy vari-
ables (1.05) is not dramatically inconsistent and, as discussed above and in Lubotsky and Wittenberg (2006), 
represents the “least inconsistent” estimate of all combinations of proxy variables. The GP bounds that we 
propose are, on average, the interval [0.34,1.05]. As is often the case, the bound associated with the reverse 
regression (in this case, 0.34) is quite far away from the true coefficient. As discussed at length in Klepper 
(1988), Bollinger (1996), and Bollinger (2003), the reverse regression bound is consistent with the case where 
all error in the relationship between Y and the proxy variables is due to the error terms in the proxy variables.

Comparing across all five columns of panel A, we note two important aspects. First, as the covariance 
between Z1 and Z2 rises, the GP bounds proposed here perform increasingly well. As expected, the extreme 
bounds approach results in a bounded region which is increasingly far away from the true coefficient. While 
the extreme bounds may initially appear attractive, as they are quite narrow, it is clear that they fail to bound 
the true coefficient because they fail to address the inconsistency in the estimates. The GP bounds do become 
disturbingly large. Klepper (1988) and Bollinger (2003) propose approaches to tighten these bounds when 
additional information is available, which we do in the next section.

Panel B presents the mirror image case where the covariance is negative. Examining the last two rows, 
here again we see that the GP bounds and the extreme bounds share a common bound; however, in this case 
it is the lower bound for the GP bounds and the upper bound for the extreme bounds. Because the covari-
ance between Z1 and Z2 is negative, the inconsistency on α is downward. As a result, regressions including 
any combination of the proxy variables result in a downward-inconsistent estimate of α, which is demon-
strated by the values of the extreme bounds. The lower GP bound is again the regression with all proxy 
variables included and is necessarily closer to the true coefficient than any subset of proxy variables. Panel 
B represents a potentially worrisome case for extreme bounds: because the inconsistency is downward, the 
researcher might conclude that Z2 is not significantly correlated with y when indeed it is.

Table 2 presents two additional sets of simulations, with C fixed at 0.5. In the first column of Table 2, 
we set α to zero. On average, the extreme bounds do not contain zero; they both lie above zero because of 
the upward inconsistency, potentially leading researchers to incorrectly conclude that α is significant or 
robustly correlated with y, when in fact it is zero. The GP bounds we propose do contain the true coefficient 
of zero.

5 We are grateful to a referee for pointing this out.
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The second column of Table 2 examines a case where the error variance for the proxy variable is larger 
(a variance equal to 2 rather than 1, as in all other simulations). Note that this column is directly com-
parable to column 3 of panel A in Table 1. We note that the Generalized Proxy bounds actually perform 
even better, containing the true coefficient over 99% of cases. The extreme bounds do not perform as 
well, containing the true coefficient less than half of the time. Again, note that the upper GP bound and 
the lower bound for the extreme bounds represent the case where all proxy variables are included. The 
inconsistency is larger than in column 3 of Panel A in Table 1.

The bottom two rows on each panel present the average bootstrapped standard error and the actual 
standard deviation for the bounds on α The “left” bound is associated with the lower bound on the proxy 
variable and the case where measurement error is zero, while the right bound is associated with the upper 
bound on the proxy variable and is associated with the case where the residual error is zero and all error in 
the relationship is from the measurement error. Here we can evaluate the bootstrapped standard errors, and 
find that they are actually quite close to the observed variation in the estimates. We take this as suggestive 
that the bootstrap is an appropriate method in this situation.

The simulation demonstrates that the generalized proxy bounds are designed to contain the true coef-
ficient, while the extreme bounds do not share this feature. The downside of the generalized proxy bounds 
is that they are quite wide. The width of this type of reverse regression bound has been a concern in this lit-
erature. As noted above, Bollinger (2003), Klepper (1988), and others have proposed approaches that can be 
used to tighten the bounds very effectively, which we do for our empirical example in the following section.

4  Application
To demonstrate the difference between extreme bounds and proxy bounds, in this section we use an illustra-
tive example from the economic growth literature, where a common problem is that the researcher wants to 
estimate a structural relationship between growth and a variable (or variables) of interest, but the condition-
ing variables include variables such as “technology” or “human capital” that are not directly observed.

In our example, we use extreme bounds analysis, which has been used to gauge the “robustness” of 
variables included in economic growth regressions, most influentially by Levine and Renelt (1992). Variants 
of the extreme bounds approach include the Bayesian Averaging of Classical Estimates of Sala-i-Martin, Dop-
pelhofer, and Miller (2004) and the related distributional approach of Sala-i-Martin (1997). With all of these 
approaches, the problem is framed as one of model specification: the “correct” specification of the model is 
one containing some subset of the control variables, and the purpose of the exercise is to bound the coeffi-
cient estimates on other variables included in the regression. In contrast, with our proxy bounds approach, 
the set of conditioning variables is correlated with some variable (human capital, technology, institutions) 
that belongs in the regression but is not directly observable.

Table 2 Simulation Results varying α and s.

  α = 0; s = 1   α = 1; s = 1.4

P(α∈GPB)   0.892   0.988
P(α∈GPB+se)   1.000   1.000
P(α∈EBA)   0.108   0.012
P(α∈EBA+se)   0.746   0.416
mean (EBA)   (0.05, 0.29)   (1.08, 1.36)
mean (left GPB)   0.05   1.08
s.d. (actual, boot)   (0.039, 0.037)   (0.038, 0.038)
mean (right GPB)   –0.66   0.33
s.d. (actual, boot)   (0.067, 0.070)   (0.075, 0.075)

Notes: C = 0.5 for all simulations. See notes to Table 1. s is from the definitions of the proxy variables (equation 8).
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In their empirical test of the Solow (1956) model, Mankiw, Romer, and Weil (1992) augment the original 
Solow model with a separate measure of human capital, as follows. Consider a production function given by:

 
1( ) ( ) ( ) ( ( ) ( ))Y t K t H t A t L tα β α β− −=  (9)

where Y is aggregate output, K and H are stocks of physical and human capital respectively, A represents 
the level of technology (which grows at the exogenous rate g), and L is the labor force. Income is invested in 
physical and human capital at the constant fractions sk and sh, respectively.

With standard assumptions, it is straightforward to derive an expression that can be estimated to measure 
the actual rate of convergence to the steady-state level of income per effective worker (y = Y/(AL)):
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where λ = (n+g+δ)(1–α–β), n is the population growth rate, g is the technology growth rate, and δ is the depre-
ciation rate of both physical and human capital.

Thus, growth in GDP per capita is a function of investment in physical capital (sk), investment in human 
capital (sh), a term including population growth, technological progress, and depreciation (n+g+δ), and 
initial income (y(0)). In addition, the coefficient estimate on the log of initial income can be used to infer the 
speed of convergence toward the steady state (λ).

Equation (10) is the model underlying our application and corresponds to the known structural equation 
(1) discussed above. As is typically done, we focus upon the linear specification here, specifically

0 1 0 2 3ln ln lnt t t h ty a a GDP a INV a NGD bS u∆ = + + + + +

This is a standard regression in the empirical growth literature. Our estimates of GDP per capita are 
adjusted for purchasing power parity, and come from the Penn World Tables database, frequently used in 
the empirical growth literature. Investment and annual population growth are also taken from Penn World 
Tables, and we follow Mankiw, Romer, and Weil (1992) in setting (g+δ) = 0.5. Although there may be other 
issues associated with general measurement error in these variables, there is widespread agreement that 
they correspond fairly directly to the theory. For our purposes, we treat them as measured correctly. A much 
more difficult question is how to accurately measure “human capital.” Indeed, Mankiw, Romer, and Weil 
(1992), among many others, discuss this issue at length. It is likely that “human capital” cannot be measured 
directly; however, numerous variables correlated with human capital are available. We include three vari-
ables correlated with stocks and accumulation rates of human capital, all of which are commonly used in the 
empirical growth literature: literacy rates, primary school enrollment rates, and secondary school enrollment 
rates. Our sample is a cross-section of 88 countries at all levels of development. Hence, the question is not 
one of specification: equation (10) is well specified. Rather, the question is one of measurement.

Using the notation of Section 1, we are interested in estimating the structural relationship

 1 2 .i i i iy Z uβ= + +′Zα
 (11)

Z2i is not measured directly, but a vector Xi of correctly measured variables exists such that Xi = ρZ2i+ei. In 
this application Xi contains primary school enrollment, secondary school enrollment, and literacy rates. Z1 is 
a vector including the variables measured without error (in our application, initial GDP per capita, physical 
capital investment, and the term including population growth).

The focus of this estimation is the relationship between growth and the three regressors: initial income, 
physical capital investment, and population growth; that is, we focus on the coefficients α. Theory defines 
the structural relationship, but we do not have a measure of human capital (Z2i). Rather, we have a set of vari-
ables (primary and secondary school enrollment and literacy rates) that are correlated with human capital. 
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The model specification literature has a similar approach: the primary concern is the coefficient estimates 
on a set of key variables (frequently initial income for estimating the speed of convergence, but often also 
a particular variable of interest), but the claim is that the correct set of additional conditioning variables 
is unknown. More generally, the traditional approach in much empirical work is to include different sets 
of control variables, under the assumption that the correct coefficient estimates on the variables of inter-
est fall somewhere in that range. This is also the idea behind more formal approaches to model selection, 
such as extreme bounds analysis and Bayesian model averaging. For example, in extreme bounds analysis, 
the researcher includes all possible combinations of a set of control variables, and identifies the “extreme 
bounds” as the minimum and maximum estimates, accounting for standard errors.

4.1  Extreme Bounds

We adapt extreme bounds analysis first suggested by Leamer and Leonard (1983) and employed in the growth 
literature by Levine and Renelt (1992) in the following way.6 After estimating the regression with each pos-
sible combination of the three human capital proxy variables (yielding seven regressions with estimates of 
α denoted as ka�  and their corresponding estimated standard errors denoted as SEk), we compute the upper 
and lower bounds for each of the correctly measured (Z1) regressors (initial GDP, investment, and population 
growth) as the maximum and minimum values of 2 ,k ia SE± ∗�  which is also the cutoff used by Levine and 
Renelt (1992). Table  3 presents the results for initial income, physical capital investment, and population 
growth; each would be considered “robust” by their definition (i.e., for each variable, the highest and lowest 
bounds are statistically significant at 95% or greater and of the same sign).7

In general, empirical growth researchers have been concerned primarily with identifying variables that 
are “robustly” correlated with growth (i.e., consistently positively or negatively correlated with growth, con-
ditional on other variables), and extreme bounds analysis and other approaches to model specification have 
been employed primarily to identify these variables. However, the coefficient estimates on initial GDP also 
allow for inference about the speed of convergence to the steady state. In the extreme bounds analysis, the 
coefficient estimate range of –0.47 to –0.36 implies an estimate of λ of between 0.008 and 0.010, which is 

6 Because Levine and Renelt included seven control variables, primarily policy variables (the analogue here is the three measures 
of human capital), they limited their control variables to exactly three in each regression. We allow for all possible measures of 
our three measures of human capital (yielding seven regressions).
7 Although Levine and Renelt also found that initial income and physical capital investment were robustly correlated with growth, 
they did not find this for population growth. Our data cover a longer time period, and our control variables differ from theirs.

Table 3 Extreme Bounds Analysis.

  β̂  s.e.   p-Value   Bound   Proxies 
Included

ln(GDP)
 Upper   –0.36 (0.10)   0.001   –0.16   lit
 Lower   –0.47 (0.10)   0.000   –0.66   lit, pri, sec
ln(INV)
 Upper   0.41 (0.09)   0.000   0.59   lit
 Lower   0.29 (0.09)   0.002   0.11   lit, pri, sec
ln(n+g+δ)
 Upper   –2.36 (0.71)   0.001   –0.94   lit
 Lower   –2.98 (0.68)   0.000   –4.33   lit, pri, sec

Notes: The table reports the coefficient estimates, standard errors, and p-values associated with each bound. The bounds are 
defined as ˆ 1.96 ,β σ±  where σ are estimated standard errors. The last column gives the proxies included in the specification 
that identified each bound.
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slightly lower than the estimate of 0.014 in the full 98-country sample in Mankiw et al. (1992).8 These esti-
mates of λ imply that a country moves halfway toward its steady state in between 70 and 87 years.

4.2  Generalized Proxy Bounds

In this section, we present the estimation of the alternative generalized proxy bounds. We proceed as follows. 
First, we estimate the base regression by OLS, including all of the proxies for Z2:

 1i i i iy = + +′ ′a Z b X e  (12)

and retain the a and b coefficients. Following Propositions 2 and 3, the estimates a provide one of the bounds 
for each of the Z1 variables.

To find the other set of bounds, we must construct Xδ, for the reverse regression. The first step is in 
finding estimates for ρ. There are four consistent estimates for ρ2 and ρ3: for example, ρ2 could be estimated by  
 2 2 1 2 2 2 3
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 For both ρ2 and ρ3, we take the average of these four 

estimators, which is equivalent to a minimum-distance GMM estimator. We then construct the lower bound 
on the slope of the unobserved Z2 variable:

 1 2 2 3 3lbB b b bρ ρ= + ⋅ + ⋅
 (13)

The minimum-inconsistent weighted average estimate of the unobserved Z2 variable is then:
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Finally, we regress these estimates 2
ˆ

iZ  on yi and Z1i:

 2 2 1 1
ˆ

i i i iZ d y ν= ∗ + +′d Z  (15)

The upper bound on the slope for the Z2 variable is given by:

 21/ubB d=
 (16)

and the second bound for the Z1 variables is given by:

 1 2/jd d−
 (17)

The results for the generalized proxy bounds are in Table 4. Several comparisons to the extreme bounds 
analysis in Table 3 merit attention. First, the coefficient estimates on investment are no longer considered 
“robust,” in that one bound is positive and one is negative. This is somewhat surprising, since investment 
is generally considered to be one of the variables most strongly correlated with growth.9 Second, the coef-
ficient estimates on the population growth term (n+g+θ) are statistically significant and negative at both 
bounds, and are larger in magnitude than the estimates from the extreme bounds analysis.10

8 The Mankiw et al. sample covers the period 1960–1985, which is extended here to 1960–2000. Their measure of human capital 
is secondary school enrollment rates.
9 For example, it was one of only three variables out of over 30 tested identified as “robustly” correlated with growth in the ex-
treme bounds analysis of Levine and Renelt (1992).
10 Although the extreme bounds analysis in Table 3 also yielded coefficient estimates that would be considered robust, popula-
tion growth was not a robust variable in Levine and Renelt (1992).
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Finally, the bounds on the coefficient estimates for initial GDP are interesting, because the point esti-
mates can be used to infer the speed of convergence toward the steady state. The upper generalized proxy 
bound is identical to the lower extreme bound, suggesting that the coefficient estimate is more negative, and 
the speed of convergence faster. The speed of convergence (λ) implied by the generalized proxy bounds in 
Table 4 is between 0.010 and 0.019, which would imply that a country would move half of the distance toward 
its steady state in between 70 and 35 years. (The range for λ in the extreme bounds is 0.008 to 0.010.)

As noted in the previous section, we can tighten these bounds by bringing additional information or 
restrictions to bear on the problem, as outlined by Klepper (1988). Note that the upper bound on human 
capital and the associated bounds on other parameters represent the case where all error in the relation-
ship stems from measurement error (ε) in the relationship between the proxies and the true human capital. 
This implies that if the true human capital measure were obtained, the R2 of the resulting regression would 
be 1. Clearly, this is not likely. By choosing an upper bound on the R2 from this ideal regression, we can 
tighten the bounds on the other parameters. However, choosing such an R2 is controversial. The approach 
we adopt here is to ask what bound on R2 would be necessary to arrive at a particular economic conclusion 
from the coefficients in the model. In this case, we focus upon the coefficient on investment. The fact that 
investment is no longer consistently positive is of concern. As shown in Bollinger (2003), we can solve for 
the R2 where the lower bound on the investment coefficient is zero. Column 2 of Table 5 presents this bound 
and the implications for the other coefficients. The implied R2 is 0.62, while the base R2 from the direct 
regression is 0.56. This restriction also has implications for the correlation between true human capital 
and its proxies in that it increases this correlation compared to the reverse regression case. In the reverse 
regression, where all error is associated with the human capital measure, the implied correlation between 
human capital and the proxy is 0.697; by tightening the bounds, we raise the implied correlation to 0.762. 
Klepper (1988) shows that these two restrictions are one-to-one: we can achieve tighter bounds either by 

Table 4 Generalized Proxy Bounds.

  β̂  s.e.   p-Value   Bound

ln(GDP)
 Upper   –0.47 (0.10)   0.000   –0.27
 Lower   –1.14 (0.26)   0.000   –1.65
ln(INV)
 Upper   0.29 (0.11)   0.012   0.51
 Lower   –0.31 (0.28)   0.274   –0.86
ln(n+g+δ)
 Upper   –2.98 (0.65)   0.000   –1.75
 Lower   –3.69 (1.59)   0.020   –6.81

Notes: The table reports the coefficient estimates, bootstrapped standard errors, and p-Values associated with each bound. The 
bounds are defined as ˆ 1.96 ,β σ±  where σ are bootstrapped standard errors.

Table 5 Tightening the GP Bounds.

  Original Lower  Restrict Inv  Restrict GDP  Upper

ln(GDP)   –1.14  –0.80  –0.99  –0.47
ln(INV)   –0.31  0.00  –0.17  0.29
ln(n+g+δ)   –3.69  –3.32  –3.53  –2.98
R2   1.00  0.617  0.826  0.569
Corr(HC, proxy)  0.697  0.762  0.719  1.00

Notes: Columns 1 and 4 report the regression results from Table 4. Columns 2 and 3 report the results of, respectively, restrict-
ing the coefficient on investment to be positive, and the coefficient on GDP to be  > –0.985, which yields a plausible magnitude 
for estimated convergence.
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placing an upper bound on the R2 or by placing a lower bound on the correlation between the proxy and the 
true variable. The implications here are actually quite plausible. In Column 3, we conduct a similar analy-
sis restricting the coefficient on initial GDP to be –0.985, which yields an estimate of λ of approximately 
0.017, closer to the estimate in Mankiw, Romer, and, Weil (1992). Again, the implications are reasonable. We 
note that this restriction is not sufficient to restrict the coefficient on log investment to be positive. While 
the restriction on investment leads to a coefficient on initial GDP of –0.8 an implied λ of 0.015. Notice that 
these restrictions affect only the lower bound (the original results are presented in Column 1), leaving the 
upper bound unchanged (which is presented in column 4).

5  Conclusions
We have demonstrated that when a researcher has a series of proxy variables that are thought to be corre-
lated with an unobserved regressor from a structural model, including all proxy variables in the regression 
results in estimates that are the least inconsistent of any combination of the proxy variables. Furthermore, 
we provide an approach that derives bounds on other coefficients in the model. The model specification 
literature has a similar goal: when a series of proxy variables is available, they examine how coefficients 
change as different combinations of proxies are included. We show that this may lead to conclusions about 
the robustness of results that are unwarranted.

The problem considered here – estimation and inference when a regressor is unobserved but proxy varia-
bles are available – is quite general. Indeed, in many empirical applications the theoretical variables of inter-
est are unobserved, and researchers have typically used so-called proxy variables in their place. This paper 
extends the work of Bollinger (2003) and Lubotsky and Wittenberg (2006), combining important results from 
both papers and establishing a general approach that provides both an indication of the direction of the 
inconsistency and its potential magnitude. As noted in Lubotsky and Wittenberg (2006), researchers have 
often been concerned about which and how many proxies to include. This paper extends those results to 
focus on inconsistency in other parameters of the model, and provides a direct comparison to extreme bounds 
analysis as a representative approach from the model specification literature.

Further work on this problem should be considered. It is straightforward to extend the results here to a 
case where there are multiple sets of proxies for multiple unobserved variables, but this requires the some-
what stringent assumptions that the proxies can be uniquely assigned to a specific unobserved variable 
and that the errors across the groups of proxies are uncorrelated. However, this is rather limiting. At this 
writing, extending this approach to a general multiple proxies for multiple unobserved variables has not 
been accomplished. The problem is that there is no unique scaling parameter like γ in the above discussion.

This paper demonstrates that including all proxy variables not only minimizes the inconsistency in esti-
mating the coefficient on the unobserved regressor (as shown by Lubotsky and Wittenberg 2006), but also the 
inconsistency in estimating coefficients on any other regressors in the model. We further show the direction 
of the inconsistency on coefficients on measured variables by establishing bounds. If the strong assumption 
that the scale is known, as assumed by Lubotsky and Wittenberg (2006), is added, our results bound the 
coefficient on the unobserved variable as well, and in any event bound the rescaled coefficient. These results 
have important implications in the interpretation of nearly all empirical work.
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Appendix: Proofs
Let
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The matrix V1 is the k × k variance matrix for Z1i, C is the k × 1 covariance, and V2 is the scalar variance of Z2i. Let 
δ be an arbitrary l × 1 vector such that δ′ρ = γ > 0 for some given value γ. Let θ = β/γ.

The next three Lemmas establish key results for Proposition 3.
Lemma 1 Expressions for (α–a) and (θ–t).
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Noting that V2, γ, and (δ′Σδ) are all scalars, this can be written as
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Lemma 2 The term 2 1
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Hence the inconsistency in both are increasing in (δ′Σδ). QED.

Lemma 3 The solution to min
δ
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QED.

Proof. The proof of proposition 1 follows from the details in the text combined with the above lemmas. 
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Proof. Proof of Corollary 1. Substitution of the results from proposition 1 into the expressions in Lemma 1 
yields
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Substitute the optimal choice of δ from proposition 1 which yields
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we have t = β: no inconsistency in the coefficient on Xδ. QED 

Lemma 4 (Sherwin-Morrison_Woodbury Matrix Inversion Lemma): If A and B are non-singular matrices, 
and X is conformable, then (A+XBX′)–1 = A–1–A–1X(B–1+X′A–1X)–1X′A–1.

Proof. Proof of Proposition 2:
The linear regression of yi on Z1i and Xi yields slope coefficients consistent for
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where I is the identity matrix of appropriate dimensions. The inverse of the leading matrix (a partitioned 
matrix) can be written as
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Turning first to the term a and applying the Sherwin-Morrison_Woodbury Matrix Inversion Lemma:
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which is the expression for a when the error-variance-minimizing choice of δ is used to construct Xδ (See Corol-
lary 2).

Turning now to b, consider
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This is equal to the expression for a when the error variance minimizing choice of δ is used to construct Xδ in 
Corollary 1 if γ = 1.
QED 
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